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This paper aims at quantifying the most acoustically radiating modes of the blade unsteady lift and inflow velocity
in the circumferential spectral domain and at localizing “hot spot” interaction areas over the fan. The proposed
method is based on the inversion of the Blake model for tonal noise from subsonic fans. The unsteady lift formulation
is first used to reconstruct the circumferential blade loading variations from the tonal noise radiation in free field.
Then the unsteady lift is related to the inflow velocity distortions by a compressible blade response function.
Discretizing the lift and velocity in the direct model leads to ill-conditioned aeroacoustic transfer matrices. The
Tikhonov regularization technique is used to stabilize the inversion. The curvature of the L-curve is used to choose
the regularization parameter such that the sources’ strength vectors are optimally reconstructed. The singular value
decomposition and the discrete Picard condition are also used to analyze the stability of the sources’ reconstructions.
One experimental case is considered to demonstrate the capability of the inverse model to qualitatively reconstruct
the blade loading and inflow velocity variations from acoustic pressure measurements in the case of an automotive

engine cooling fan.

Nomenclature

generic matrix
number of blades
blade chord, m

speed of sound, m - s~
quadratic error vector, p — p, Pa
lift per unit span N - m~!
force per unit volume, N - m™
N-m™

unsteady lift vector, N - m~!
lift transfer matrix, m~!
number of radial elements
imaginary number /—1
number of points in the discretized radiation space
ordinary and modified Bessel functions, nth order
circumferential wave number, w/R, rad - m™!
acoustic wave number, w/c, rad - m~!

lift, N

number of acoustic tones

row and column dimension of matrix A

rotational Mach number, QR/ ¢,

acoustic pressure, Pa

acoustic pressure vector, H f or Zv, Pa

vector of measured far-field acoustic pressures, Pa
rate of mass injection per unit volume, kg - m~ -
s! (¢ = 0q/01)

fan hub and tip radii, m

incompressible Sears function

1

3, and per unit area,
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compressible Sears function

Lighthill’s stress tensor

time, s

tangential speed of the rotor, 2R, m - s~
left singular matrix

source volume, m?

right singular matrix

inflow velocity vector, m - s~
spatial and spectral inflow velocity, m - s~
number of circumferential harmonics to be
reconstructed

minimum and maximum circumferential order to
be reconstructed

acoustic field point coordinate; spherical
coordinates

acoustic source point coordinate; cylindrical
coordinates

velocity transfer matrix, N -s-m™
regularization parameter

rotor blade pitch angle, rad
distance between two radial elements, m
Delta—Dirac function

residual two-norm ||e||

two-norm of the regularized solution
circumferential angle rotating with the blades, rad
Phase of the lift (or velocity) source, rad
curvature of L-curve

air density, kg - m™>

diagonal matrix of singular values o,

reduced frequency, k,C/2

time delay, s

generic solution vector

generic right-hand side vector
angular velocity of the rotor, rad - s~
angular frequency, mB2, rad - s~!

1

1
1

3

1

estimate
radial element index
radiation space discretization index
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m = acoustic frequency index
reg = regularized

w = circumferential index

0 = tangential component

3 = axial component
Superscripts

H = Hermitian

lift = lift

T = transposed

vel = velocity

I. Introduction

COUSTIC radiation of fans is highly dependent on the

nonuniform flow ingested by the rotor, e.g., potential and wake
rotor—stator interaction. If the flow is nonuniform but stationary, it
leads to periodic unsteady blade lift, which radiates tonal noise at the
blade passage frequency and its harmonics. Both the magnitude and
the directivity of radiated tones depend on the circumferential modal
content of the unsteady lift [1]. Therefore, the acoustic radiation
intrinsically contains information about the unsteady lift and
nonuniform inflow velocity. A simple and convincing experimental
illustration of this effect consists of placing an obstruction next to the
upstream or downstream flowfield of a subsonic fan in free field.
Moving the obstruction results in changes in tonal noise level and
directivity.

The goal of inverse aeroacoustic models is to reconstruct the
source strength distribution from a set of acoustic pressure
measurements. However, the inversion of aeroacoustic direct models
sometimes leads to mathematically discrete ill-posed problems, as
already noted by Li and Zhou [2] and Luo and Li [3]. The ill-posed
problems are often overcome by the Tikhonov regularization
technique [2-4] that penalizes the source strength to be
reconstructed.

In a previous paper [5], the inverse aeroacoustic approach was
investigated to model the elementary source distribution on the
surface of an axial fan based on the Morse and Ingard direct model,
and preliminary experimental results were provided. The present
paper is a further investigation on the reconstruction of the sources in
terms of unsteady lift and inflow velocity, based on the models
derived by Blake. Further experimental investigation is also carried
out for a 3-D hemispheric acoustic measurement meshing.
Moreover, an original method is proposed for choosing the
regularization parameter of the Tikhonov regularization technique,
based on a combination of the curvature of the L-curve and the Picard
condition, which gives useful information about the convergence of
the reconstructed solution.

In the first section of the paper, we present the Blake models,
which relate the unsteady lift or the inflow velocity to the tonal noise
radiation, and their discretization. Then, the Tikhonov regularization
technique and the crucial point of choosing the regularization
parameter are addressed. In the final section, experimental results are
presented to show the feasibility of the proposed method for an
automotive engine cooling fan. Particular attention is paid to the
choice of the regularization parameter for this application.

II. Direct Models

Many aeroacoustic models have been developed to calculate the
tonal noise radiation of fans in free field. Among the most common
are the model of Lowson [6], the model of Morse and Ingard [7]
based on the Helmholtz integral, and the model of Blake [1] based on
the Curle’s equation, for example. The approach used in this paper is
based on the model proposed by Blake, which relates the radiated
noise to the unsteady lift experienced by the blades. Moreover, this
model provides a relationship between the deterministic inflow
velocity and the unsteady lift using Sears-like functions. The
advantage of the velocity formulation when inverting the direct
model is that the nonuniform velocity profile reconstruction can be

Da(X)

—p
Inverse Problem ®

Rotor

Fig. 1 Sound radiation from a fan (coordinate systems).

compared to hot-wire anemometer measurements. On the other hand,
the unsteady lift formulation permits comparison with experimental
data provided by blade-integrated pressure sensors.

A. Unsteady Lift Formulation

To examine the acoustic radiation of axial fans, it is convenient to
use the polar coordinate system y = (R, 6, y3) to describe the sources
on the blades and the spherical coordinate system x = (r, ¢, @) to
describe the acoustic free field, as shown in Fig. 1. Both coordinate
system origins are located at the center of the rotor.

The rotor is considered as an array of rotating surfaces. As
formulated by Curle (see Blake [1]), the acoustic pressure due to a
source at location y and emitting at time t can be expressed at
position x and time ¢ by an integral equation of the form

1 1 BF’-” aZT
) =— g-——L+ ’~’)]dV T 1)
Po(x.) 4r ///V(r)[r (q dy; — dyidy; S

where the first term ¢ is a monopolar source related to the rate of mass
injection per unit volume, the second term dF"”/dy; is a dipolar term
that represents the distribution of force per unit volume, and the third
term 9°T;;/dy,;dy; is a quadripolar term related to the Lighthill tensor
T;;. The integral in Eq. (1) has to be evaluated at a retarded time
t=1t—|r|/cy, where r is the distance between the source and the
field point where the acoustic pressure has to be evaluated and ¢ is
the speed of sound. When the fan tip Mach number is subsonic, as is
the case for automotive engine cooling fans investigated in this
paper, the monopolar and the quadripolar terms can be neglected in
Eq. (1) [11.

The force per unit volume F”(R, 6,, ys, t) exerted by the blades on
the fluid at location (R,0,,y;) is decomposed into an axial
component F§' (R, 6, y3,t) = F"(R, 0,, y3, t) cos y and a tangential
component F}'(R, 6,,y;,1) = F"(R, 0,, 3, t) siny, where y is the
pitch angle and 0, is the circumferential angle rotating with the
blades. Moreover, the forces are assumed to be concentrated in the
plane y; = 0. This assumption is acceptable as long as the axial
dimension of the rotor (apitch angle x chord = y x C) is much
smaller than the acoustic wavelength. Thus, the force per unit volume
can be changed to the instantaneous pressure difference across the
rotor disk F”(R, 0,, y3,t) = F"(R, 0),, 1)8(y3).

Following Blake [1], the blade lift per unit span F'(R, ?) is then
calculated by integrating the instantaneous pressure differential
across the rotor F” (R, 6,,, 1) along the chord (—C/2R < 6, < C/2R).
For a circumferentially periodic inflow perturbation composed of
wavelengths 27R/w, where w=]—o0;+o00o[ is the Fourier
circumferential order of the perturbation; the circumferential and
radial distribution of the fluctuating lift on the rotor blades in a frame
rotating with the rotor can be expressed as follows:
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dL(R, 0, 1)
dR

B—1 w=+4o00 ) ) 27T
— Z Z F’(W, R)efzwﬂtezw[HJr@W(R)]S(e _ SE) )

s=0 w=—00

F'(R,0,1) =

where the index s refers to the blades, the index w refers to the
circumferential harmonic order of the lift, and 2 is the rotation speed
of the rotor in rad - s™'. Equation (2) represents a series of B line
forces spaced at regular intervals 277/B around the circumferential
direction. The phase of the lift along the span (due to the sweep of the
blade or the incident gust) is taken into account by 6, (R).

Blake obtained the sound pressure p, (x, 7) radiated by B blades by
integrating (over the span) the product of the lift per unit span
F’'(w, R) projected over circumferential mode w and the appropriate
Green function for rotating dipolar sources in free field. The far-field
approximation (r > R) is given by

pa(x, 1) = Z Z [P, (x, )], ne B2 3)

m=—00 W=—00
with

—ikoBeor
[Pa (x7 w)]w.m = L eil(”lBiw)(n/Zﬂﬂ)S(a) - mBQ)

4mr

Acoustic wave propagation

Ry .
x / Jp—w(koR sina) x F'(w, R)e™®)
R

Bessel function term Unsteady lift
mB—w .
x[ cosycosa + w R SmY 1dR 4)
\W—4 0

Axial forces contribution
Tangential forces contribution

These equations are consistent with the results derived by Lowson
[6] or Morse and Ingard [7]. The first summation of Eq. (3) represents
the combination of multiple tones at pulsations w = mBS2. The
second summation represents the decomposition of the lift over
circumferential harmonics w. In Eq. (4), the first term describes the
propagation of the acoustic waves, which have a wave number
ko = w/c, and rotate at a circumferential phase velocity equal to
[mB/(mB — w)]2. In the integration over the radius (from the hub
radius Ry to tip radius R;), the Bessel function term refers to the
ability of a circumferential mode w to radiate sound at the harmonic
of rank m of the blade passage frequency BS2. The term
F'(w, R)e™%®) is the contribution of the circumferential mode w to
the lift per unit span acting at a radius R, where the phase along the
span is taken into account by 6, (R). The terms in brackets weight the
relative importance of axial and tangential forces.

The model proposed by Blake is similar to the Morse and Ingard
model [7] except for the way the sources are considered. In the Blake
model, the sources are the unsteady lift per unit span (N-m™),
whereas the sources are the forces per unit area (N - m~2) acting by
the blade on the fluid in the Morse and Ingard model. As a
consequence, a multiplicative factor 2R appears in the equation
relating the acoustic pressure to the force per unit area in the Morse
and Ingard model. Moreover, tangential forces were neglected in the
inversion of the Morse and Ingard model [5], whereas in the present
paper, both axial and tangential forces are contained in the unsteady
lift source. Finally, the Morse and Ingard model is not well adapted to
relate the force source terms to the nonuniform inflow velocity, as
opposed to the model proposed by Blake (as presented in Sec. IL.B).

The unsteady lift formulations (3) and (4) will be discretized in
Sec. IL.C to be inverted.

B. Velocity Formulation

The Sears theory is used to relate the unsteady lift per unit span
F’(w, R) to the nonuniform inflow velocity V(w, R). To relate the
unsteady lift F'(w,R) to the nonuniform but stationary inflow
velocity, Blake [1] proposed to use a 2-D Sears function, leading to

an inextricable discretization problem. In this paper, instead of
considering an oblique gust (with aradial and a circumferential wave
number) impinging the blades, the fan rotor is decomposed into
infinitesimal radial strips along the span, which individually respond
to a transversal gust. In other words, ata given radius, the gust and the
blade are considered of infinite span so that the gust interaction
problem can be treated as a one-dimensional problem. The lift
response per unit span to a transverse gust is given by the expression

(1]
F/(w, R) = mpoC|V (W, R)|U(R)S(05) ®)

where U(R) = RS2 is the tangential speed of the rotor at radius R and
09 = kyC/2 =wC/2R is the reduced frequency. Also, V(w, R) is
the circumferential harmonic decomposition of the inflow velocity
normal to the movement of the blades, such that

2
V(W,R) :% A v(0, R)e=™?d#,
. (6)
v(.R)= Y V(w.R)e™

Moreover, in Eq. (5), S(oy) is the incompressible Sears function
defined as follows [6]:

1
S(og) = i0y[Ko(iog) + K (iog)] 7

where K, and K, are, respectively, the zeroth-order and first-order
modified Bessel functions. However, if the reduced frequency is
large enough, such that the time for an acoustic wave to travel the
chord is not negligible in comparison to the time for a blade to travel
an inflow velocity disturbance, a compressible Sears function is
recommended. The model of Amiet [8] is used to include the low-
frequency approximation of the compressible Sears function:

Sc(0g. M) = ‘9(0/987/’33)[10(1\4300/,33)
+ iJ,(M7oy/ ﬂzg]e—wwr)/ﬁ% ®)
with
B =V1-M;
and

f(Mr) = (1 - IBr) g"'Mr + ﬂr ()“(1 + IBr) - ﬂ"z

where J, and J; are, respectively, the zeroth-order and first-order
ordinary Bessel functions. A criterion for the applicability of Eq. (8)
is given by Amiet [8]: o,M,/B2 <1 or w <[2R(1 — M?)]/CM,.
This condition is satisfied up to w = 43 fora C = 5 cm chord blade
rotating at = 27 x 50 rad - s~! at a 10 cm radius. This condition
therefore provides an upper bound of the circumferential harmonic w
in Eq. (3) when the velocity formulation is used.

C. Discretization of the Direct Problems
1. Unsteady Lift Formulation

To determine the unsteady lift of the blades from a set of acoustic
pressure measurement points, Eq. (3) must first be discretized to
allow inversion. The procedure described in [5] is adopted. In Eq. (3),
the summation over w is truncated from w,;, to wg.. The
discretization of the integral over R (index i) and the acoustic
radiation space discretization (index j) lead to the following
expression of the radiated sound pressure at the frequency mBS2 and
at point j:
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; ikor;  Wmax 1
_ ikoBes emImBw/20) 3 F(w, Ry)e™Ou(R)
47r, ‘ ’

J W=Wpin i=1

pmj=

B—
X [cos ycosa; + % sin V]Jr;zB—w(kORi sina;) AR (9)
ol

A linear system can therefore be written:
ij = ZZHmjiwfiw (10)

with

ikyBe™o’;

e*i(mB—W)(n/27¢j)
drr;

Hm_jiw =

B —
X [cos ycosa; + mk—Rwsin y:|JmB_W(kOR,~ sina;)AR (11)
ol

fiw = F' (W, R)e™ &) (12)

where AR is the distance between two discretized radii and H,, ;. 18
the aeroacoustic matrix transfer that relates the unsteady lift vector
fiw to the tonal noise in far field p,,;. In Eq. (12), the term e/ (&)
takes into account the phase of the lift along the span. The
corresponding matrix formulation is written as follows:

p=Hf (13)

2. Velocity Formulation

Inserting Eq. (3) in Eq. (4) and making use of the discretization
described earlier leads to

pm_j = Z Z Zm_jiwviw (14)
with

iknB ikgr )
Zujin = =Py CU(R))S(07) == — ~m=/2-0)

drr;

mB —w
X |cosycosa; +

siny |J,p_w(koR; sine;) AR (15)
koR; :

Vi = [V(W, R;)|e™0 (R (16)

where Z,;,, is the aeroacoustic transfer matrix that relates the
nonuniform inflow velocity v;,, to the tonal noise in far field p,,;. In
Eq. (16), the term ™% (%) is the complex phase of the transversal
gust along the blade span. The corresponding matrix formulation is
written as follows:

H .. H (m)

Pl ml lwf::; ml 1w
=1 H, o H .
pmj mjlw oo MmjlIW o
Pmi Hmlei:]'n) o Hmllwm)x

p=2Zv 17)

The Sears function S(oy) in Eq. (14) can be replaced by the
function S.(0y, M,) defined in Eq. (8) to take compressibility effects
into account.

III. Inverse Model

The inverse problem consists of solving Eqs. (13) or (17) for the
unsteady lift f or the nonuniform inflow velocity v, respectively. To
overcome the poor conditioning inherent to these inverse problems,
the Tikhonov regularization technique is used in this section [9]. The
singular value decomposition (SVD) of a generic matrix and the
discrete Picard condition are then presented to analyze the stability of
the regularized solution. The curvature of the L-curve is also
introduced as tool to choose the regularization parameter.

A. Solution

The dimensions of the aeroacoustic transfer matrices are
dim(H) = dim(Z) = (M x J,I x W). The matrices H and Z to be
inverted are intrinsically poorly conditioned because of the large
dynamics of the matrix coefficients, introduced by the Bessel
function in Egs. (10) and (14). Indeed, the value of the Bessel
function J,z_,, shows a sharp peak when w = mB. A physical
interpretation is that the circumferential mode mB has a strong
contribution to the acoustic tone at the frequency mBS2, because all
the elementary dipoles on the rotor radiate in phase.

The Tikhonov regularization is used to stabilize the inversion of
the direct discrete problems [9]. In the case of unsteady lift
reconstruction, it consists of minimizing the sum of the energy of the
error (e = p — H f), between the measured sound field p and the
predicted sound field Hf, and the energy of the source term f
multiplied by a regularization parameter B. This leads to the
following cost function:

J=ee+ Bfif (18)

where the superscript H denotes the Hermitian of a matrix.
The solution of this minimization problem is given by [9]

freg =[H"H + BII""H"p 19
In [5], the transfer matrix H was decomposed in M submatrices

H,,, each associated with the acoustic radiation p,, at frequency
mBQ:

or
(m)
flwmin
H,pjgon e o Hmllw,‘,’,’;’x S g
max
I{mjiw("‘l oot Hmjlw&';:( . (21)
: Fovin
H, om0 oo HmJIWmL
T,




102 GERARD ET AL.

The inversion of Eq. (21) leads to the lift distribution that generates
the acoustic tone at mBS2. The advantage of this “monoharmonic”
formulation is that one can only select the most contributing
circumferential modes w(™ of the lift around mB (wié’i’r)1 =mB—2to
wi = mB +2, for example) to the radiation to the discrete
frequency mBS2. This formulation leads to the inversion of a series of
smaller and better conditioned matrices H,, than H because only
low-order Bessel functions are involved. Each solution vector f'cs

is given by
freg,m = [HZHm + ﬂml]_lHZﬁm (22)

Subsequently, these solution vectors f'., ., €ach containing a few
circumferential modes around mB, are assembled to form the vector
containing all the reconstructed circumferential modes. The
disadvantage is that M linear systems have to be inverted, thus M
regularization parameters have to be chosen.

In the present paper, a “multiharmonic” formulation is proposed.
The matrix H includes the contribution of all circumferential modes
(fromw,,;, = 1 tow,,,, = 4B + 4, forexample) to the radiation of all

discrete acoustic tones mBS2 (from m = 1 to m = 4, for example):
p'” Hlllw.mm s Hypng,,
p:lj H]JI“E“““ Tt H]lemux
P%nj ) Hmjl\x:/min tre Hm_/:lwmx
Pmy Hyiwg =0 Husiwg,,

It leads to a larger and more badly conditioned matrix H as
compared to H,, because the transfer matrix has a very large
coefficient dynamics introduced by the Bessel function, due to
nonradiating and efficiently radiating modes, respectively. The
advantage of the multiharmonic formulation is that only one linear
system has to be inverted [the solution is given by Eq. (19)], thus one
has to choose a single regularization parameter to reconstruct all
modes (from W, 10 Wyay)-

Replacing H by Z and f,, by v, in Eq. (19) leads to the
regularized solution of the inverse problem in terms of the inflow
velocity:

Vo =[27Z + BII'Z7p 24

B. Stability of the Regularized Solution

To evaluate the stability of the solution, the discrete Picard
condition [9] is considered. To introduce this condition, the singular
value decomposition of a generic matrix A € Z"*V is performed for
an overdetermined system (M > N) so that the solution of the
inverse problem is unique:

N
A =UZV' =) u,0,0] (25)

where U = (uy,...,uy) € Z™*V is the matrix of the left singular
vectorsof A and V = (vq,...,vy) € ZV*V is the matrix of the right

singular vectors of A. The columns of matrices U and V are
orthonormal, UTU = VTV = Iy, where I is the N x N identity
matrix, and the diagonal matrix X = diag(o, ..., oy) contains the
nonnegative singular values in decreasing order.

The regularized Tikhonov solution of the generic linear system
A¢ = ¥ can be expressed in terms of the SVD of the matrix A [9]:

N
$e= 0,
reg n

n=1 0

¥
+p

S

v, (20)

BN

From Eq. (26), it can be seen that the regularization parameter 8
has a stabilizing effect by avoiding the division by particularly small
singular values o,,. Moreover, the discrete Picard condition states that
the coefficients |#]v| must decay faster to zero than the singular
values o, to obtain a stable regularized solution [9]. If the Picard
condition is not satisfied, the reconstructed solution will significantly
deviate from the exact solution, even if a regularization technique has
been used. This is of fundamental importance for choosing the
optimal regularization parameter. Replacing A by H or Z in Eq. (25)
leads, respectively, to the SVD of the lift and velocity aeroacoustic
transfer matrix. Moreover, replacing ¥ by p and D e DY freg OT Vg iN

Hlliw Hlllwmax flwmm
Hyjw <+ - Hyp,, SFiwg
: (23)
Hyjiw =0 o Hyjra, fiw
Hyjw - -+ H MJITWyax f IWinax

Eq. (26) leads to the regularized solution in terms of the SVD of the
lift and the inflow velocity, respectively.

C. Choosing the Regularization Parameter

The crucial point of the regularization is the choice of the
regularization parameter . The L-curve corner criterion is one of the
most classically used techniques [5,9]. The L-curve consists of
plotting the two-norm 7(8) = log || f e || of the regularized solution
vs the residual two-norm {(B) = log ||p — H f ||, corresponding to
various values of B. An ideal L-curve is plotted in Fig. 2a from a
simulated acoustic pressure vector p with a very large signal to noise
ratio (60 dB). The L-curve (Fig. 2a) can be decomposed into two
regions: 1) for small B (part of the L-curve above the corner), the
regularized solution is dominated by the effects of errors in the input
data (such as measurement noise in the acoustic pressures p), the
solution is underregularized, and 2) for large B (part of the curve on
the right side of the corner), the solution is overregularized, leading to
excessive residual error. In between these two regions, an optimal
regularization parameter can be found at the corner, for which there is
a tradeoff between under- and overregularization. The corner is
selected as the point of maximum curvature of the L-curve (Fig. 2b).
The curvature is defined as [9]

é—/n// — ;-//n/
(@72 + )y

where differentiation (/) is with respect to .

K(B) = @27
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Fig. 2 L-curve and its curvature for a large S/N ratio (60 dB).

When realistic measurement noise is present in the acoustic
pressure vector p, itis difficult to clearly identify the corner of the L-
curve and the curvature plot can exhibit more than one maximum. In
such a case, a local maximum is chosen from the curvature plot, with
the help of the discrete Picard condition, to eliminate under- or
overregularized solutions, as discussed in the following section.

IV. Experimental Results

The aim of this section consists of identifying the lift source term f
and the velocity source term v from a set of sound pressure
measurement points p. The Tikhonov regularization technique is
used to stabilize the inversion of the linear systems given by Egs. (13)
and (17). The regularization parameters are chosen by using the
analysis tools presented in Sec. III.

A. Experimental Setup

The experiments were conducted on a six-bladed automotive
engine cooling fan with equal blade pitches. The case considered in
this section demonstrates the capability of the inverse model to
experimentally, qualitatively reconstruct the circumferential
variation of blade loading during the rotation of the propeller: a
triangular obstruction was added between two vanes of the stator (see
Fig. 9a). This obstruction covers a 34 deg angular section and
strongly interacts with the rotor. As shown, such an obstruction
significantly modifies the tonal radiation of the fan. The objective of
the inverse model is to pinpoint the lift fluctuation and the inflow
velocity variation associated to such an obstruction.

The fan has an exterior diameter of 30 cm and a central hub of
12.5 cm in diameter. The rotational speed of the fan is set to 48.5 Hz
(2910 rpm). Measurements were carried out in an anechoic room to
respect the free-field radiation condition. Because the radiated
acoustic tones are stationary, the measurements were recorded using
only four microphones: a reference microphone located at 1.8 m in
the upstream axial direction of the fan and three scanning
microphones spaced on a 1.8 m radius downstream half circle in
directions o =0, 20, 40, 55, and 70 deg. The three scanning
microphones are then moved by increments of Agp =45 deg in the
circumferential direction to generate J = 33 acoustic measurement
locations. The averaged autospectra of the scanning microphone
signals provide the magnitude of the sound pressure and the averaged
cross-spectra between the reference, and the scanning microphones’
signals provide the phase of the sound pressure relative to the
reference microphone. The measurements were restricted to the
blade passage frequency (BPF =291 Hz) and its first three
harmonics (M = 4). The far-field condition is respected for a 1.8 m
radius hemispheric surface because this radius is larger than the
largest wavelength of interest (1.17 m) and larger than the diameter of
the fan (30 cm). A sampling frequency of 4000 Hz is large enough to
sense acoustic pressures up to the highest frequency of interest and
the spectral resolution is 2.5 Hz. Moreover, 50 linear averages per
measurement point were carried out.

As the discretization of the fan is concerned, / = 3 circles located
at radii R, =7 cm, R, = 10.5 cm, and R; = 14 cm were chosen.
The minimum circumferential harmonic is w.;,, =1 and the
maximum circumferential harmonic is wy,,, = 32. Thus, the number
of unknowns in Eqgs. (13) and (17) is (Wyax — Wiin + 1) X I =96
and the number of equations is J x M = 132. The linear systems are
thus overdetermined. The condition numbers of the matrices H and
Z are cond(H) = 0,/09s = 1.7 x 10" and cond(Z) = 0,/09s=
1.66 x 10'2, which indicate that the transfer matrices H and Z,
relating, respectively, the unsteady lift and the nonuniform inflow
velocity to the radiated sound field, are poorly conditioned.

B. Choosing the Regularization Parameter

To choose the regularization parameter, the L-curve and its
curvature are first plotted. Two regularization parameters
corresponding to different local maxima of the curvature are chosen.
The selected values of f are then inserted into Eq. (26) and the Picard
condition relating |u” p| and o, is analyzed. In the following, the left
superscripts (lift) and (vel) refer to the lift reconstruction and to the
nonuniform inflow velocity reconstruction, respectively.

1. Unsteady Lift Reconstruction

In the case of the lift reconstruction, the L-curve and its curvature
are plotted in Figs. 3a and 3b. The corner of the L-curve is difficult to
precisely locate and its curvature exhibits a number of local maxima.
The regularization parameter corresponding to the maximum of
curvature of the L-curve is '8, =3 x 107¢ and the regularization
parameter corresponding to the last local maximum curvature is
it =3.6x 1073, In Figs. 4 and 5, the singular values (dots)
located to the left of the vertical line correspond to the squared
singular values larger than the regularization parameter g, and
lit 8 respectively. The regularization has a negligible impact on the
contribution of these singular values. The singular values located to
the right of the vertical line correspond to the squared singular values
smaller than the regularization parameter. These singular values are
dampened by the regularization. To illustrate the dampening of the
singular values, the term |""u? px| /"o, (open circles), correspond-
ing to a nonregularized problem, is compared to the term
it [1"%f p|/ (62 4 B)] (stars), corresponding to the regularized
problem. For the low-order singular values, the open circles and the
stars are superimposed, which means that these first singular values
are unaffected by the regularization. When the squared singular
values are close to the regularization parameter 3, the stars start to
deviate from the open circles, which means that these singular values
are slightly dampened by the regularization parameter. Finally, for
the high-order singular values, the terms |« p| /"o, increase and
the terms "o, [|""u? p|/ ("o 4 B)] decrease, which means that the
sum in Eq. (26) will diverge if no regularization is applied. For the
discrete Picard condition to be satisfied, the coefficients |'ftul p|
(crosses) must decrease faster than the singular values o, (dots),
i.e., the term |"f'? p| /"o, (open circles) should decrease. Therefore,
the regularization parameter has to be chosen such that the singular
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Fig. 3 L-curve and its curvature: unsteady lift reconstruction.
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values that do not satisty the discrete Picard condition are sufficiently
dampened. Replacing B by g, =3x10"° in the term
liftg [l p|/ (o2 + B)] of Eq. (26) leads to less singular values
affected by the regularization parameter ('8, <!io2 for n < 59,
Fig. 4) than replacing B8 by '8, =3.6 x 1073 (itg, <lifig2 for
n <22, Fig. 5). Choosing '8, leads to dampen all the singular
values for which the discrete Picard condition is not satisfied,
whereas many singular values that do not satisfy the discrete Picard
condition are unaffected by the regularization parameter '8, . Thus,
the best regularization parameter is ' 8, a priori.

2. Nonuniform Inflow Velocity Reconstruction

In the case of the velocity reconstruction, the L-curve and its
curvature are plotted in Figs. 6a and 6b. The corner of the L-curve is
difficult to precisely locate and its curvature exhibits a number of
local maxima. However, contrary to the L-curve curvature associated
to the lift reconstruction (Fig. 3b), the maximum of curvature of the
L-curve corresponds to the last local maximum, corresponding to
vl =49 x 1072 Another  regularization parameter,
vl = 1.7 x 1073, corresponding to the previous local maximum
is chosen to illustrate the effect of the choice of the regularization
parameter on the velocity reconstruction. In Figs. 7 and 8, the
singular values (dots) located to the left of the vertical line
correspond to the squared singular values larger than the
regularization parameter ‘°!f, and ‘?'B,, respectively. The
regularization has a negligible impact on the contribution of these
singular values. The singular values located to the right of the vertical
line correspond to the squared singular values smaller than the
regularization parameter. These singular values are dampened by the
regularization. Replacing B by **!8, =1.7x 107> in the term
velo [l p| /(o2 + B)] of Eq. (26) (stars in Figs. 7 and 8) leads to
less singular values affected by the regularization parameter
(1B, < ¥lo? for n < 54, Fig. 7) than replacing f by ¥, = 4.9 x

~2 (1B, < ¥o2 for n <17, Fig. 8). Choosing ¥, leads to
dampen all the singular values for which the discrete Picard
condition is not satisfied (|*'u! p|/*'o,, not decreasing, open circles
in Figs. 7 and 8), whereas many singular values that do not satisfy the
discrete Picard condition are unaffected by the regularization
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Fig. 6 L-curve and its curvature: nonuniform inflow velocity reconstruction.
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parameter '8, Thus, the best regularization parameter is **'f, a
priori.

In both cases (lift and velocity reconstructions), the a priori
optimal regularization parameter corresponds to the last local
maximum of the L-curve curvature.

C. Unsteady Lift and Nonuniform Inflow Velocity Reconstructions

The reconstruction of unsteady lift and nonuniform inflow
velocity is presented in this section. To study the influence of the
regularization parameter on the reconstruction, the reconstructed lift
using B, is compared to the reconstructed lift using ''4,, and the
reconstructed velocity using ', is compared to the reconstructed
velocity using ¥!8,.

1. Unsteady Lift Reconstruction

The spatial reconstruction of the unsteady lift is superimposed to a
photograph of the fan under investigation in Figs. 9a and 9b. When
liftg =3 x 107% is used in the regularization, the obstruction cannot
be located by the inverse problem (Fig. 9a), but when ', = 3.6 x
1073 is chosen, it is possible to locate a lift fluctuation near the
obstruction (Fig. 9b). Moreover, when ' 8, is chosen, the magnitude
of the solution is 10 times larger than the magnitude of the solution
when 4, =3.6 x 107 is chosen. Therefore, B, =3 x 107¢
leads to an underregularized solution. When '8, = 3.6 x 1073, the
regularized solution shows that a blade experiences a negative lift
when passing through the obstruction zone, whereas positive lifts are
observed when a blade enters or quits the obstruction zone. The lift
fluctuations outside the obstruction can be partly attributed to the
interaction between the rotor and the stator vanes. These fluctuations
can also partly originate from the truncation of the sum over the
circumferential order w in Eq. (10) and errors in the reconstruction of
certain circumferential lift modes. As already noted [3], very low-
order circumferential modes are not properly reconstructed because

their contribution to the tonal noise is negligible for a six-bladed
rotor. The lift fluctuation near the obstruction is qualitatively
different from the unsteady blade forces reconstructions presented in
[10], which can be explained by the differences in the formulation of
the direct problems, as discussed in Sec. IL.C. In [10], M
monoharmonic submatrices were inverted, and the tangential forces
related to the drag were neglected. In this paper, a single
multiharmonic matrix is inverted, and both axial and tangential
forces are taken into account in the model.

The spectral content of the unsteady lift is shown in Figs. 9¢c and
9d, in which the root mean square of the spectral unsteady lift

averaged over the radius, defined as f ., (W) = /(O ! fif5)/1 is
plotted vs the Fourier circumferential order w. The choice of ', =
3 x 107° also leads to larger reconstructed magnitudes (Fig. 9c) than
choosing the regularization parameter '8, = 3.6 x 10~ (Fig. 9d).
The choice of ', = 3.6 x 1072 has the effect of filtering out certain
unsteady lift modes at the ends of the spectrum (Fig. 9d). The
regularization filters out the modes associated to the smallest singular
values, which correspond to the least radiating modes. A larger
regularization will dampen more singular values, thus filtering out
more components in the lift spectrum.

The circumferential mode w = mB is the most radiating mode at
pulsation mBS2. Furthermore, it is the only mode that radiates sound
in the axial direction (o = 0) due to the zeroth order Bessel function
inEq. (4) when w = mB. Thus, if one is interested to reconstruct only
these most radiating modes, a single microphone can be located in the
axial direction. Replacing the acoustic field point coordinate
x=(r,¢,a) =(r,0,0), using the relation w = mB in Eq. (4), and
assuming that the lift per unit span F'(w, R) is constant along the
span, leads to an estimate of the mBth-order mean lift per unit span:

4nr[P (7,0,0;mBR)],.p.m

B
fes(mB) = kOBe’kO’ cos y(Ry — Ry)

(28)

Table 1 shows the magnitude of the estimated mean lift modes
| fest(mB)|| of order mB (1 < m < 4) from Eq. (28), compared to the
root mean square of the regularized lift modes fmg(mB)|mﬂ] and
Sreg(mB)|ing . The lift magnitude of the modes mB given by the
Eq. (28) is comparable to the magnitude given by the regularized
inverse problem when '8, is chosen. When '8, is used, the
regularized solutions are more than four times larger than the
estimated f 5.

Thus, the choice of an a priori optimal regularization parameter
g, from the curvature of the L-curve and the discrete Picard
condition has then been validated by a qualitative localization of the
lift fluctuations associated to the obstruction and a quantitative
estimation of the lift associated to the most radiating modes mB
(1 <m<4).

Finally, Figs. 9e and 9f show the extrapolated acoustic radiation
directivity from the regularized solution p = H f'., (solid surface)
and the measured acoustic radiation directivity p (mesh surface) at
the blade passage frequency (291 Hz). The largest regularization
parameter '8, results in a less accurate acoustic field extrapolation
at the blade passage frequency (Fig. 9¢). This can also be seen in the
L-curve (Fig. 3a), in which the residual norm ¢! is smaller when
choosing " 8, rather than " 8,. This illustrates the tradeoff between a
small smoothing norm and a small residual norm.

2. Nonuniform Inflow Velocity Reconstructions

To study the influence of the regularization parameter on the
reconstruction, the reconstructed velocities and the reconstructed
acoustic directivity are shown in Fig. 10. The left and right graphs
correspond, respectively, to vl =1.7x107° and
velf, =49 x 1072,

The spatial reconstruction of the nonuniform inflow velocity is
superimposed to a photograph of the fan under investigation in
Figs. 10a and 10b. For *'8, = 1.7 x 1073, the obstruction cannot be
located by the inverse problem (Fig. 10a), but for '8, = 4.9 x 1072
it is possible to locate a velocity variation near the obstruction
(Fig. 10b). The magnitude of the reconstructed solutions is 12 times
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Fig. 9 Left-hand column: regularization parameter 'if' 8, = 3 x 10-°. Right-hand column: regularization parameter ' 8, = 3.6 x 1073.

larger for ¥ 8, than for ¥ 8,. Moreover, the fluctuations of the inflow
velocity (Fig. 10b) are phase shifted from the fluctuations of the lift
(Fig. 9b) near the obstruction. This can be attributed to the complex
Sears function in the transfer matrix Z that shifts the phase between
the lift and the gust. The velocity variations outside the influence
zone of the obstruction can be partly attributed to the interaction
between the rotor and the stator vanes and to errors in the
reconstruction of certain modes or truncation of the sum over the
circumferential w in Eq. (14).

The spectral content of the inflow velocity is shown in Figs. 10c
and 10d, in which the root mean square of the nonuniform inflow
velocity ~ averaged  over the  radius, defined  as

Table 1 Comparison of the root mean square of the regularized lift
modes f'qq (1mB) | 8 andf.., (mB)|ur s, to the magnitude of the estimated
lift modes ||f.; (mB) ||, calculated from Eq. (28)

mB 6 12 18 24

Freg(mB)ling , N -m™! 2089 0137 0653 0.064

- 1

Freg(mB)ling ,N-m~! 0.138  0.035 0036  9.6x 1073
2

Ifu(mB)|l, N - m™! 0218  0.033 0032  9.0x 107

Ureg (W) = /(DT v5,05,) /1 is plotted vs the Fourier circumferential
order w. As already noted for the lift reconstruction, the largest
regularization parameter leads to more inflow velocity modes filtered
out (more singular values are dampened).

The mode w = mB is also the most radiating velocity mode at
pulsation mBS2. Similarly to Sec. IV.C.1, replacing the acoustic field
point coordinate x = (r, ¢, @) = (r,0,0), inserting Eq. (5) into
Eq. (4), using the compressible Sears function defined in Eq. (8),
using the relation w = mB in Eq. (4), and assuming that the inflow
velocity v(w, R) is constant along the blade span, leads to an estimate
of the mBth-order mean velocity:

4r[P,(r,0,0; mBRQ)],.p.m
PoCU[(Ry + Ry)/21S (09)koBe™" cos y(Ry — Ry)
(29)

Vege(mB) =i

Table 2 shows the magnitudes of the estimated velocity modes
[|vei (mB)|| of order mB (1 < m < 4) from Eq. (29), compared to
root mean square of the regularized lift modes vy, (mB)|\ 8, and
Vyeg (MB) |yl By The velocity magnitude of the modes mB given by
Eq. (29) is nearly the same as the magnitude given by the regularized
inverse problem when Y¢!8, is used, but important deviations are
observed when Y g, is chosen.
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Therefore, as already noted for the unsteady lift reconstruction, the
lastlocal maximum of the L-curve curvature (Fig. 6b) corresponds to
the optimal regularization parameter in the experimental cases
shown in this paper. First, the choice of ¥¢!8, leads to dampen the
singular values that do not satisfy the discrete Picard condition.
Subsequently, the velocity variations associated to the obstruction
are clearly visible when choosing ‘*!8,. Finally, quantitative
estimations of the mBth-order mean velocity from a “well-posed
problem” [Eq. (29)] confirm a posteriori that the choice of the
regularization parameter ¥, is optimal.

Finally, Figs. 10e and 10f show the extrapolated acoustic radiation
directivities from the regularized solution p = Zv,, (solid surface)
and the measured acoustic radiation directivity p (mesh surface) at

Table 2 Comparison of the root mean square of the regularized
velocity modes v, (mB)|.a 8 and V., (mB) v s, t0 the magnitude of the

estimated velocity modes ||v. (mB)||, calculated from Eq. (29)

mB 6 12 18 24
Dreg (mB) |y, m - 57! 1.069 0.100 0.209 0.059

Ureg (MB) |y, m 57! 0.0611 0.020 0.020 8.2 x 1073
Ve (mB) [, m - 57! 0.111 0.024 0.028 9.1 x 1073
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Fig. 10 Left-hand column: regularization parameter **' 8, = 1.7 x 10~5. Right-hand column: regularization parameter '8, = 4.9 x 1072,

the blade passage frequency (291 Hz). The largest regularization
parameter ¥°' B, gives a less precise acoustic field extrapolation at the
blade passage frequency (Fig. 10e). This can also be observed in the
L-curve (Fig. 6a), in which the residual norm %" is larger for ¥¢! 8,
than for ¥, .

3. Link Between the Unsteady Lift and the Nonuniform Inflow Velocity
Reconstructions

Although the unsteady lift and the inflow velocity are analytically
related through the Sears model (or Amiet model for compressible
flow), the link between the regularized unsteady lift and the
regularized inflow velocity is not straightforward. The order of the
singular values of the transfer matrices H and Z and the
regularization effects must be analyzed with care to compare the
unsteady lift and the velocity reconstructions.

First, the diagonal matrix ¥ = diag(oy,...,0y), containing the
nonnegative singular values of H or Z in decreasing order, is
different for H and Z. On the one hand, the largest singular values of
the aeroacoustic transfer matrix H relating the unsteady lift to the
acoustic pressure field are associated to the lowest discretized radii of
the rotor. On the other hand, the largest singular values of the
aeroacoustic transfer matrix Z relating the nonuniform inflow
velocity to the acoustic pressure field are associated to the largest
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discretized radii. This can be observed by relating the transfer
matrices Z and H as follows:

Zm_jiw = giWRzszjiW (30)
with

zﬂ%[]O(M%O-G/ﬂ%) + ljl (M%O-(-)/ﬁ%)] e_,'qﬁf(M,)/ﬂ;
wCl[Ko(io/ B?) + K, (iog/ B7)]

giw = —IimpyC
(1)

where the different terms in Eq. (31) are defined in Sec. IL.B. The
reduced frequency o, depends on R; and w, and M, depends on R;. In
Eq. (30), ||g:w|| decreases as a function of R; but the term || g, R?||
increases as a function of R;, which means that the term R? in Eq. (30)
increases the coefficients of the matrix Z associated to the largest
discretized radii.

Subsequently, because the regularization filters out the lowest
singular values, the velocity is better reconstructed at outer radii
using the velocity formulation [inversion of Eq. (14)] than by
calculating the inflow velocity from the unsteady lift [using Eq. (5)
coupled with inversion of Eq. (10)].

Therefore, to compare the inversion of the velocity formulation to
the inflow velocity calculated from the reconstructed unsteady lift,
the following linear system has to be solved:

Py = 33 0, Y (32)

i

rather than the linear system of Eq. (14). This formulation is used to
rearrange the singular value order of the velocity formulation so that
the singular values associated to the lowest radii are larger (as in the
case of the lift formulation). In index notation, the regularized
solution is then given by

{UiWRZ} re;

vt = 71{,21 £ (33)
with the contracted index [ = iw.

Thus, the filtering effect of the regularization on the reconstructed
lift as a function of the radius is similar to the one obtained by the
regularization of the inversion of Eq. (32). In Fig. 11, the velocity
reconstruction calculated from the reconstructed lift (through a
compressible Sears function) is compared to the reconstructed
velocity obtained by Eq. (33). Preliminary experimental results are
also shown in Fig. 11.

The mean wake velocity profile generated by the downstream
obstruction (Figs. 10a and 10b) has been measured with a single hot-
wire anemometer. The hot wire was located at various radial
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Fig. 11 Comparison of the reconstructed velocities at different radii.
Line: velocity calculated from the reconstructed unsteady lift, dashed
line: reconstructed velocity from Eq. (33), and thick line: experimental
data from hot-wire anemometer measurements.

positions (R =8 cm, R = 11 cm, and R = 14 cm) in the upstream
flow, at 0.5 cm from the blade leading edge. The hot-wire
anemometer was moved circumferentially from —7 /4 to 7r/4 around
the obstruction by increments of 7/20. The hot-wire signal was
acquired for 3.4 s, corresponding to 159 revolutions of the fan
rotating at 2800 rpm. The sampling frequency was set to 4800 Hz to
give 102 samples per revolution. The hot wire was installed to
provide maximum voltage, perpendicular to the blade leading edge,
thus giving an estimation of the transversal gust velocity (relative to
the blade) generated by the obstruction. The measured mean velocity
at different radii and circumferential locations is shown in Fig. 11.
The continuous part of the reconstructed velocities is imposed to the
mean value of the measured velocity over the circumferential
direction.

The reconstructed inflow velocity obtained from the inversion of
Eq. (32) is smoother than the inflow velocity calculated from the
reconstructed unsteady lift. The latter is expected to be more accurate
because the number of dampened singular values is lower in this
case. As already discussed, the velocity reconstruction using both
methods decreases as the radius increases. Using the velocity
inversion model of Eq. (14) would lead to a larger inflow velocity for
the largest radius, but would decrease the magnitude of the inflow
velocity for the lowest radial location.

The reconstructed wake velocity irregularity is well located by the
inverse models when compared to the anemometer measurements.
However, the magnitude of the reconstructed velocity is
underestimated because the lowest circumferential orders of the
inflow velocity, which are energetic, are filtered out by the
regularization. However, the highest acoustically radiating orders of
the nonuniform inflow velocity are expected to be accurately
reconstructed. Further experimental anemometer data covering the
whole rotor circumference would be required to measure the
circumferential spectrum of the inflow. Then, this spectrum could be
compared to the estimated circumferential spectrum of the inflow
velocity reconstructed by the proposed inverse models.

V. Conclusions

Two dependent inverse aeroacoustic models for tonal noise
radiation from subsonic axial fans, based on the Blake formulations
have been proposed. To accurately reconstruct the unsteady lift and
the inflow velocity, the Tikhonov regularization of the inverse
problem has to be introduced and the regularization parameter must
be chosen with care. The amount of regularization introduced by this
parameter can be analyzed in terms of the number of dampened
singular values of the aeroacoustic transfer matrices, to select the
most appropriate local maximum of the L-curve curvature. For the
experimental cases shown in this paper, the last local maximum of
the L-curve curvature has been found to be optimal. Many
simulations and experimental reconstructions support this
observation.

This method can serve as a quantitative nonintrusive estimation of
the most radiating deterministic unsteady lift modes and the
deterministic nonuniform inflow velocity modes. The nonradiating
modes are filtered out by the regularization. When the reconstructed
modes are transformed into the spatial domain, it is possible to
localize “hot spots” of interaction between the rotor and its
environment. However, the method is qualitative in that the filtered
modes in the spectral domain lead to an underestimation of the spatial
lift fluctuation or inflow velocity variation, as revealed by the
preliminary hot-wire anemometer measurements. Further exper-
imental investigation could be carried out by completing the
preliminary hot-wire anemometer measurements and by comparing
the reconstructed unsteady lift to experimental data provided by
sensors embedded in the blades.

Another application of the proposed inverse models is sound field
extrapolation. It can be applied for active or passive (inflow velocity
or lift modifications to decrease tonal noise radiation) control
purposes, to simulate the fan primary sound field in the whole
radiation space from a set of acoustic pressure measurements. In this
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situation, a small regularization parameter can be chosen to minimize
the residual norm, even if the solution is underregularized.
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